学术动态
当前位置: 首页 > 学术动态 > 正文
“数学与生命科学交叉研究”系列报告(五)(六)
发布时间 : 2022-10-11     点击量:

“数学与生命科学交叉研究”系列报告(五)

时间:2022.10.13(周四),上午8:30-9:30(北京时间)

腾讯会议:636-903-927 会议密码1013

报告人:Lin Wang, University of New Brunswick, Canada

报告题目:The effects of delayed dispersal in ecological models


报告摘要:In this talk, I will present some recent work on studying the effects of delayed dispersal in predator-prey metapopulation models and competition models. I will show that either the dispersal delay is harmless in the sense that it does not affect the stability of the metacommunity, or the dispersal delay can induce stability switches with finite number of stability intervals. I will also show that in some cases, the delayed dispersal can induce multiple coexistence equilibria and the dispersal has significant impacts on determining the competition outcome and can induce multi-stability.


报告人简介: 王林, 2003年纽芬兰纪念大学博士毕业, 现为加拿大新不伦瑞克大学教授.主要研究领域为生物数学、生态学、神经网络、流行病学 和计量经济学等。主持和参与加拿大国家自然与工程基金、中国自然科学基金, 加拿大MITACS基金重点项目、加拿大自然与工程战略项目等17,发表论文100余篇.指导博士后,博士,硕士和访问学者40余名. 曾获麦凯恩基金青年学者奖.


“数学与生命科学交叉研究”系列报告(六)

时间:2022.10.13(周四),上午9:30-10:30(北京时间)

腾讯会议:636-903-927 会议密码1013

报告人:Yuming Chen, Wilfrid Laurier University, Canada

报告题目:Modeling and analysis of tumor-immune system


报告摘要:Malignant tumor remains a major public health problem and is the leading cause of death in the world. In this talk, we introduce some of our works on modeling the complex interaction between tumors and immune system, which include three models. In the first conceptual model, we take into account the effect of antigenicity. The model is described by a system of two ordinary differential equations. In the second model, we consider the regulation of PD-1/PD-L1 and the stimulation delay of tumor antigen for the immune system. In fact, the action of a tumor on the immune system includes stimulation and neutralization, which usually have different time delays. Then we propose a tumor-immune system to incorporate these two kinds of delays. Though simple, these models can have complex dynamical behaviors such as Hopf bifurcation, Bogdanov-Takens bifurcation, homoclinic bifurcation, saddle-node bifurcation, and so on. Some biological implications of the theoretical results and numerical simulations are also provided.


报告人简介: 陈玉明,分别于1991年和1994年从北京大学获应用数学学士学位和硕士学位,并于2000年从加拿大约克大学(York University)获理学博士学位,20009月至20016月在加拿大阿尔伯塔大学(University of Alberta)做博士后。从20017月起,一直任教于加拿大罗瑞尔大学(Wilfrid Laurier University)。现为该校数学系正教授、博士生导师。主要研究兴趣为动力系统和泛函微分方程理论及其在生物数学和神经网络中的应用。已在包括SIAM Journal on Mathematical Analysis, Transactions on the American Mathematical Society, Nonlinearity, Journal of Differential Equations, Physica D, Proceedings of the American Mathematical Society Mathematical Biosciences, Neural Networks等国际著名刊物发表论文一百五十余篇,其成果被同行广泛引用,曾获安大略省科技与创新部早期研究者奖。主持了5项加拿大国家自然科学与工程理事会(NSERC)科研基金项目,参与了3项中国国家自然科学基金面上项目。积极参与高质量人才如硕士生、博士生、博士后的培养。陈教授与中国学者有广泛交流与合作。


陕西省西安市碑林区咸宁西路28号     西安交通大学数学与统计学院

邮编:710049     电话 :86-29-82668551     传真:86-29-82668551