报告题目:Local discontinuous Galerkin Method for the Nonlocal Viscous Conservation Laws
报告时间:2018年12月31日,15:30-16:30
报告地点:数学与统计学院北五楼427
报告人:李灿
报告摘要:
In this talk, we investigate the numerical approximations of scalar conservation laws with nonlocal viscous term. The viscous term is given by the form of convolution. With the help of the characteristic of viscous term, we design a local discontinuous Galerkin method to solve the nonlocal model and prove the stability as well as the convergence of semi-discrete local discontinuous Galerkin method in L2 norm. To demonstrate the validity and accuracy of our scheme, we test the Burgers equation with two kinds of typical kernels as the viscous term. The numerical results show that our numerical scheme is robust and effective.
报告人简介:
李灿,男,博士,于2012年6月获得兰州大学计算数学博士学位。现为西安理工大学应用数学系副教授、硕士生导师。研究兴趣主要包括非局部偏微分方程的数值解及应用、多孔介质中的反常扩散现象的可计算建模;目前主要侧重高阶差分格式、间断有限元、谱方法、深度学习理论等在微分方程求解中的应用。主持完成国家自然科学基金、陕西省自然科学基金、教育厅基金各1项,目前主持陕西省自然科学基金在研1项。已在Advances in Computational Mathematics、Applied Numerical Mathematics等国际SCI期刊上发表18篇学术论文,其中ESI高被引论文1篇。