应数学与统计学院邀请,美国堪萨斯大学数学系教授 黄维章博士于7月5日来我校作学术报告。
时间:2012. 7.5(周四) 下午5:30
地点:理科楼407
报告题目: Finite element solution of heterogeneous anisotropic diffusion problems
and maximum principles
黄维章报告摘要: Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Conventional numerical methods can produce spurious oscillations when they are used to solve those problems.
Common approaches to avoid this difficulty include designing a proper numerical scheme and/or utilizing a proper mesh so that the numerical solution satisfies a discrete maximum principle (DMP). A well known
mesh condition for a linear finite element solution to satisfy DMP is the so-called nonobtuse angle condition. In this talk, I will present recent developments in this research direction. In particular, I will
present a so-called anisotropic nonobtuse angle condition for general anisotropic diffusion problems. Other related issues including generation of DMP satisfaction meshes, combination of DMP satisfaction and mesh adaptivity, and mesh conditions for problems with convection and reaction terms, will also be addressed. Both analytical and numerical results will be presented.
黄维章教授简介:美国Kansas大学数学系教授,1983年毕业于 南京大学数学系, 获学士学位;1989毕业中国科学院应用数学研究所,获数学博士学位.
主要兼职:美国Kansas大学数学系教授.
研究领域:应用数学, 科学计算, 数值分析, 网格生成和应用, 偏微分方程数值分析.
主要成就:主持美国自然科学基金6项,发表论文69篇,大多数发表在top-SCI杂志上;被SCI引用900多篇次,单篇引用次数最高达117次.
欢迎感兴趣的师生参加!